Comprehensive gene expression analyses in pluripotent stem cells of a planarian, Dugesia japonica.
نویسندگان
چکیده
The neoblasts are the only somatic stem cells in planarians possessing pluripotency, and can give rise to all types of cells, including germline cells. Recently, accumulated knowledge about the transcriptome and expression dynamics of various pluripotent somatic stem cells has provided important opportunities to understand not only fundamental mechanisms of pluripotency, but also stemness across species at the molecular level. The neoblasts can easily be eliminated by radiation. Also, by using fluorescence activated cell sorting (FACS), we can purify and collect many neoblasts, enabling identification of neoblast-related genes by comparison of the gene expression level among intact and X-ray-irradiated animals, and purified neoblasts. In order to find such genes, here we employed the high coverage expression profiling (HiCEP) method, which enables us to observe and compare genome-wide gene expression levels between different samples without advance sequence information, in the planarian D. japonica as a model organism of pluripotent stem cell research. We compared expression levels of ~17,000 peaks corresponding to independent genes among different samples, and obtained 102 peaks as candidates. Expression analysis of genes identified from those peaks by in situ hybridization revealed that at least 42 genes were expressed in the neoblasts and in neoblast-related cells that had a different distribution pattern in the body than neoblasts. Also, single-cell PCR analysis of those genes revealed heterogeneous expression of some genes in the neoblast population. Thus, using multidimensional gene expression analyses, we were able to obtain a valuable data set of neoblast-related genes and their expression patterns.
منابع مشابه
Two distinct roles of the yorkie/yap gene during homeostasis in the planarian Dugesia japonica
Adult planarians possess somatic pluripotent stem cells called neoblasts that give rise to all missing cell types during regeneration and homeostasis. Recent studies revealed that the Yorkie (Yki)/Yes-associated protein (YAP) transcriptional coactivator family plays an important role in the regulation of tissue growth during development and regeneration, and therefore we investigated the role o...
متن کاملExpression and functional analysis of musashi-like genes in planarian CNS regeneration
The remarkable regenerative ability of planarians is made possible by a system of pluripotent stem cells. Recent molecular biological and ultrastructural studies have revealed that planarian stem cells consist of heterogeneous populations, which can be classified into several subsets according to their differential expression of RNA binding protein genes. In this study, we focused on planarian ...
متن کاملExpression patterns of the STAG gene in intact and regenerating planarians (Dugesia japonica).
We examined the spatial and temporal expression of the planarian Dugesia japonica STAG-related gene (DjStag), in both intact and regenerating planarians, by whole-mount in situ hybridization and relative quantitative real-time PCR. The first localized transcripts of DjStag were detected in the blastemas three days after amputation, in all regenerates including those from head, tail and trunk pi...
متن کاملExpression of Nephrin Homologue in the Freshwater Planarian, Dugesia japonica
Excretory organs contain epithelial cells that form a filtration membrane specialized for ultrafiltration to produce primary urine. In vertebrates, the filtration membrane is made up of slit diaphragm (SD) formed by glomerular podocytes. Basal metazoans such as flatworms are also known have filtration epithelial cells, called flame cells, which exhibit SD-like structures. The molecular componen...
متن کاملCellular and molecular dissection of pluripotent adult somatic stem cells in planarians.
Freshwater planarians, Plathelminthes, have been an intriguing model animal of regeneration studies for more than 100 years. Their robust regenerative ability is one of asexual reproductive capacity, in which complete animals develop from tiny body fragments within a week. Pluripotent adult somatic stem cells, called neoblasts, assure this regenerative ability. Neoblasts give rise to not only a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The International journal of developmental biology
دوره 56 1-3 شماره
صفحات -
تاریخ انتشار 2012